Water Saving Technologies in Rice Cultivation: Up-scaling at Farmers’ Holding in Villupuram district of Tamilnadu

PRESENTED BY

Subbalakshmi Lokanadhan
Professor (Agronomy)
Directorate of Water Technology Centre,
Tamil Nadu Agricultural University
Coimbatore – 641 003.
Objective: To improve the water usage efficiency, grain yield and livelihood by implementing water saving technologies for sustaining rice production in the villages of Villupuram District of Tamil Nadu by spreading rice technologies such as System of Rice Intensification (SRI), Alternate Wetting & Drying Irrigation (AWDI) & Direct Seeding using Drum seeder (DSR) to the farmers.

The financial support obtained for implementation at the farmers field by IOCL (SRPL), Chennai as CSR Project is kindly acknowledged.

Contributing Authors

Dr. Subbalakshmi Lokanadhan, P. Keerthanan, Dr. P. Sridhar, and Dr. S. Panneerselvam
Directorate of Water Technology Centre,
Tamil Nadu Agricultural University (TNAU)

Corresponding Email: kplokanadhan@yahoo.co.in
Global Population Distribution vs. Freshwater Reserves

- **North and Central America**: 8% of Global Population, 15% of Global Available Freshwater Resources
- **South America**: 6% of Global Population, 26% of Global Available Freshwater Resources
- **Europe**: 13% of Global Population, 8% of Global Available Freshwater Resources
- **Africa**: 13% of Global Population, 11% of Global Available Freshwater Resources
- **Asia**: 60% of Global Population, 36% of Global Available Freshwater Resources
- **Australia and Oceania**: 1% of Global Population, 5% of Global Available Freshwater Resources
RICE ECOSYSTEM IN INDIA

UPLAND
IRRIGATED WET
IRRIGATED DRY
SHALLOW RAINFED
INTERMEDIATE RAINFED
DEEP WATER

(Rice knowledge bank, IRRI, 2001)
Improved irrigation methods in groundwater/ lift irrigated areas would address the challenges of water scarcity. By improving water use efficiency, adoption of water saving technologies can lead to increased crop yields with less water drop.
More With Less - System of Rice Intensification

Benefits:
- Saving in seeds (80%)
- Water saving (25-30%)
- Less inputs (Seed/water/labour/fertilizer/energy)
- Incorporation of weeds as manure
- Aeration and profuse tillering
- Increased yield (20-30%)
- Drought tolerance
- Resistant to Pest & Disease

Young Seedlings (14-15 DAS)
- One Seedling / Hill
- Square Planting (25 x 25 cm)
- Conoweeder Operation (10, 20, 30 Days)
- Intermittant Irrigation (2.5 cm height)
 (AWDI - Field Water Tube)

| Particulars | Yield (Kg/ha) | Net Income (Rs/ha) | Water use (mm) |
|----------------------|---------------|-------------------|----------------|----------------|
| SRI | 6592 | 58692 | 885 |
| Conventional Planting| 5689 | 45038 | 1109 |

SRI is Climate Resilient Technology - Conserves Natural Resources
Install a PVC pipe 20 cm in diameter & 40 cm height with holes (5 mm).

Place it in the rice field (15 cm above and 25 cm below the soil surface) after transplanting.

Start AWD at 10 days after transplanting and allow the field to dry out.

Re-flood the field to a standing water layer of 2.5 cm when the groundwater is 15-20 cm below the soil surface.

Continue AWD cycles after flowering until maturity.

AWDI, water savings are in the order of 15-30%, minimize Nutrients loss & Methane emission.
Easier (Less Drudgery)
Timely crop establishment
Reduced labour cost for establishment
Possible savings in water use (15-20%)
Maximizes net profit by 20%
Reduce production cost (Rs.4000-5000/ha)
Early harvest by 7-10 days.

No to... Nursery / Pulling out of Seedlings / Transplanting & Labour dependency
Project Locations – Villupuram District
Water Productivity and saving as influenced by method of rice cultivation
Water Productivity and % water Saving as influenced by AWDI & Continuous submergence
Crop Productivity and % yield increase as influenced by AWDI & Continuous submergence

Crop Productivity and % yield increase as influenced by AWDI & Continuous submergence
Field day

Capacity building Programme
IOCL-Team and Officials Visit:
Water Requirement Recorded In The Project Area

Conventional planting system: 1200 - 1390 mm

SRI: 940 mm - 1050 mm

AWDI: 850 mm - 1150 mm

Direct Seeded Rice (DSR): 950-1100 mm
<table>
<thead>
<tr>
<th>S.N</th>
<th>Activities</th>
<th>Target (ac)</th>
<th>Achievemnt (ac)</th>
<th>Impact (ac)</th>
<th>Target (ac)</th>
<th>Achievemnt (ac)</th>
<th>Impact (ac)</th>
<th>Target (ac)</th>
<th>Achievemnt (ac)</th>
<th>Impact (ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SRI</td>
<td>25</td>
<td>25</td>
<td>78.9</td>
<td>25</td>
<td>25</td>
<td>85.2</td>
<td>25</td>
<td>25</td>
<td>142.5</td>
</tr>
<tr>
<td>2</td>
<td>AWDI</td>
<td>25</td>
<td>25</td>
<td>77.3</td>
<td>25</td>
<td>25</td>
<td>104.7</td>
<td>25</td>
<td>25</td>
<td>127.5</td>
</tr>
</tbody>
</table>
ABSTRACT

Rice is the principle food crop of Tamilnadu state, cultivated in large area with crop area distribution in all the districts of the state under irrigated or rain fed eco-systems. Among the major cereals grown rice crop consume major amount of water and the water use efficiency is also low compared to other field crops. There are promising technologies on water saving in rice and these were advocated and up-scaled to the farmers in Villupuram district of Tamilnadu State. There techniques were popularised among poor land holding farmers in rice growing locations. The main objective of the study was to bring awareness among rural farmers on water saving technologies in Rice production, thereby increasing water use efficiency and enhanced grain yield. Field demonstrations were carried out in selected locations for different water saving technologies like System of Rice Intensification (SRI), Alternate Wetting and Drying Irrigation (AWDI) and Direct Seeded Rice (DSR) in rice crop cultivation. The observations and bio-metric data were recorded in the tagged area in the demonstration field plots. The average mean data was computed and inferred.

In the demonstrations conducted, the conventional planting system recorded water requirement from 1200 - 1390 mm, 940 mm -1050 mm in SRI, AWDI recorded 850 mm -1150 mm and Direct Seeded Rice (DSR) 950-1100 mm. Simple and affordable field water tube as tool was much useful for irrigation scheduling in rice cultivation with the principle of alternate wetting and drying method, thereby saving a sizable quantity of irrigation water over continuous submergence of water. The knowledge of using the tool was also demonstrated. The shallow depth of irrigation was guided through use of field water tube and it facilitated, the farmers to take decision as to when to irrigate the rice field and how much to irrigate appropriately. The quantity of water required to produce one kilogram of rice was 2200 - 2950 litres in conventional planting compared to 1440-1880 litres in SRI system. In AWDI, it recorded 750 mm -1050 mm and 950mm - 1100mm in DSR. The grain yield obtained with water use efficiency trend in the different technologies up-scaled is discussed in this paper. Increase in the grain yields obtained with water saving made in rice crop made the farmers confident on the water saving technologies and its adoption in rice cultivation in the District.
THANK YOU