ASSESSMENT OF WATER QUALITY FOR IRRIGATION PURPOSE OF NAJAFGARH DRAIN USING IRRIGATION WATER QUALITY INDEX (IWQI)

PRESENTED BY:

Nipra Sharma (Ph.D Research Scholar)
Dr. Priyanka Kumari (Guest Faculty, CDMS)
Prof. Amarjeet Kaur (Director, CDMS)

AGENDA OF PRESENTATION

INTRODUCTION TO NAJAFGARH DRAIN

WATER QUALITY ASSESSMENT

IDENTIFICATION OF POLLUTANTS

IRRIGATION WATER QUALITY INDEX

WAY FORWARD

INTRODUCTION

- The study examines the water quality of a stretch of approx. 32km of Najafgarh Drain for agricultural usage.
- Drain Water is from three sectors i.e. **domestic, industrial and agriculture** contribute into wastewater loads in the Najafgarh Drain.
- It is a **natural habitat** for various small mammals and migratory birds.
- Rain water is being impounded here.
- The Background Flow is about **150 MLD** before the drain enters into NCT Delhi.
- The largest of all drains in the National Capital Territory and carries a total flow of over **2000 MLD**. [6]
- Due to limited sewerage systems, large quantities of **untreated sewage** from the secondary drains enter the Najafgarh Drain[2]

KEY ISSUES

- Under conditions of **severe water stress** at present and in the near future highlights the need for alternatives, such as wastewater, to fulfill irrigational requirements[3]
- The quality of irrigation water directly influences the quality of the soil and the crops grown on this soil.
- The water through **bundh present near Chhawla** just flows into agricultural land in this area.
- In April 2019, farmers from the same villages surrounding the drain **urged** for compensated for losses suffered by them due to the polluted drain.
- CGWB reported "high fluoride content at Najafgarh" under the "major groundwater problems and issues".
- problem of **heavy siltation**, the accumulation of solid waste from all the neighboring areas and excessive growth of water hyacinth
- **large quantity of sewage** is divert to storm water drains while the STPs are under utilized.

STUDY AREA (Najafgarh Drain, South-West region)

Location
South West Region of Delhi
at 28.5929° N, 77.0346° E

Population **22,92,363**

Area 420 sq km.

Constituting three sub-divisions:

Dwarka, Kapashera, Najafgarh

Climatic Conditions

Summer: March- May with highest

temperature: 45°C

Winter: November – February with

lowest temperature of 6-7°C

Existing Trees:

Acacia leucophloea-Reonja

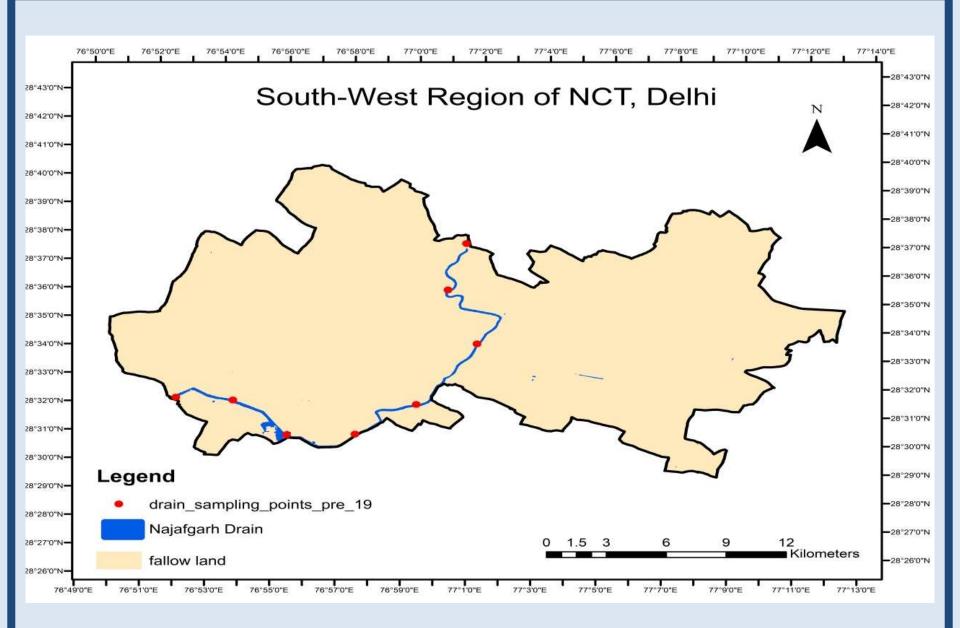
Acacia nilotica/arabica-Babul/Kikar

Eucalptus globulus-Eucalptus

Prosopis juliflora–Vilaithi Kikar 8/25/2022

Azadirachta indica—Neem 6th WORLD WATER SUMMIT 2022

Ficus elastica-Indian Rubber



METHODOLOGY

Sample Collection (32 surface water samples) Inter-relation between parameters (Correlation Analysis)

Index Application

Physico- Chemical Analysis (20 parameters)

Major Impacting parameters (PCA)

Irrigation Water Quality Index (IWQI)

Distribution of Data (Descriptive statistics)

Inter-relation between sampling sites (HCA)

Geo-Spatial Representation

RESULTS

High BOD(120mg/L) and COD(203mg/l) values observed

High Total Dissolved Solids (666mg/l) and Salinity (615mg/l)

High Electric Conductivity values(1058 μS/cm)

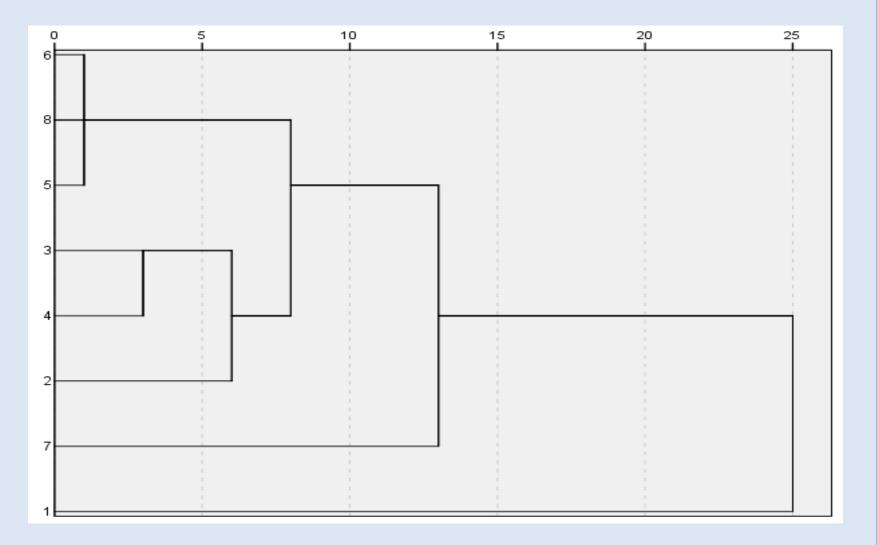
High Alkalinity (272mg/l) and Hardness (300mg/l)

High concentration of Sodium(170mg/l) and Chloride (310mg/l)

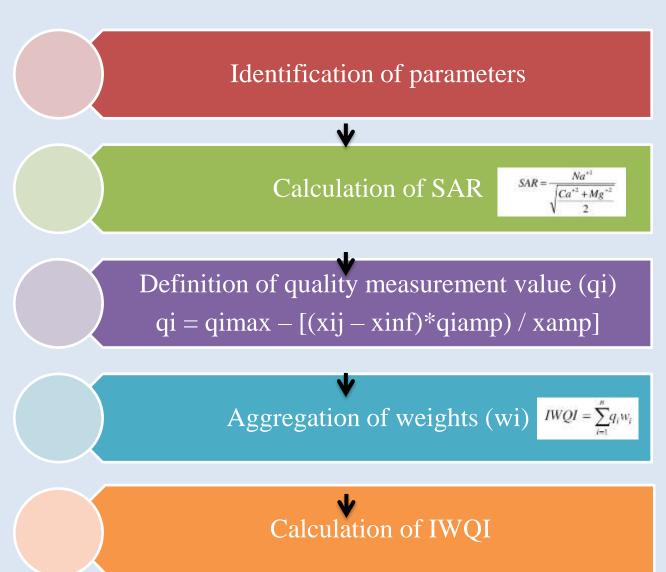
DISCUSSION

Pre Monsoon

- Salinity and conductivity (0.99);
- BOD and COD (0.96);
- Hardness with conductivity(0.75) and salinity(0.75);
- Chloride with alkalinity (0.78) and Hardness(0.85);
- Sulphate with TDS(0.81);
- Alkalinity with sodium(0.86) and potassium(0.81)

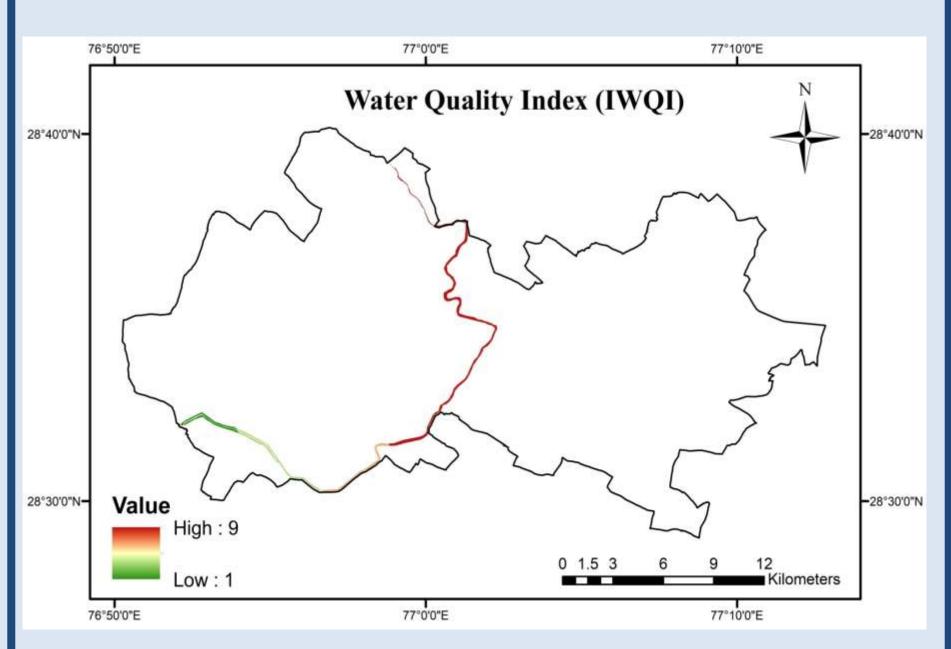

Post Monsoon

- Conductivity with salinity(0.95), TDS(0.90), alkalinity (0.89), chloride(0.89) and sodium (0.90);
- Salinity with TDS(0.97), alkalinity (0.84), hardness (0.84), chloride(0.96);
- TDS with alkalinity(0.82), hardness (0.81) and chloride(0.98);
- Alkalinity with hardness(0.80), chloride(0.78);


Principal Component Analysis (PCA)

Component	Initial Eigenvalues			Rotation Sums of Squared Loadings			
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
PRE MONSOON							
1	7.22	38.01	38.01	5.52	29.06	29.06	
2	5.43	28.59	66.60	5.09	26.80	55.87	
3	4.26	22.42	89.02	4.99	26.30	82.17	
4	1.06	5.59	94.62	2.36	12.44	94.62	
POST MONSOON							
1	10.20	60.02	60.02	8.86	52.17	52.17	
2	2.50	14.74	74.77	2.46	14.47	66.64	
3	1.80	10.59	85.36	2.37	13.99	80.63	
4	1.03	6.08	91.45	1.83	10.81	91.45	
8/25/2022	6th WORLD WATER SUMMIT 2022 13						

Hierarchical Cluster Analysis (HCA)



Irrigation Water Quality Index (IWQI)

IWQI	Category	Impact on Soil	Impact on Plant
85-100	no restriction	low probability of causing salinity; extremely low permeability	no toxicity risk to plants
70-85	low restriction	moderate permeability	avoid salt sensitive plants
55-70	moderate restriction	moderate to high permeability	plants with moderate tolerance to salts
40-55	high restriction	use in soils with high permability without compact layers	plants with high tolerance to salts with special salinity control
0-40	severe restriction	avoided for irrigation purpose	only plants with high salt tolerance
8/25/2022	6th WORLD WATER SUMMIT 2022 16		

Sampling location	Pre monsoon	Post monsoon
A1	85.25	62.57
A2	63.12	78.63
A3	66.12	67.74
A4	39.5	53.7
A5	38.31	35.99
A6	35.58	39.22
A7	27.32	44.11
A8	27.83	38.83

CONCLUSION

contamination level is increases with the increasing distance

No National Policy framework on wastewater drainage. regular monitoring, strategies and effective management of resources

Un-authorised use for irrigation purpose

WAY FORWARD

- rejuvenation of the water bodies is of the utmost importance.
- support multiple recreational activities to bring in water activities.
- landscaped embankments and adorned with ornamental and aesthetically to capitalize on the beautification.
- install meshes of varied densities at various places.
- help raise groundwater level and benefit.

REFERENCES

- [1] Central Pollution Control Board annual report, 2001-2002
- [2] Water and Power Consultancy Services (WAPCOS) report, 1999
- [3] Al-Jiburi, H. K., and Al-Basrawi, N. H. (2007): "The Hydrogeology of Iraqi western and southern desert", Western Iraqi Desert Journal, Special Issue, pp.77-91.
- [4] Tanji, K. K. (1990). "Agricultural Salinity Assessment and Manag-ement". *American Society of Civil Engineers*, Manuals and Reports on Engineering Practice, No.(71), pp.(619).
- [5] Kwiatkowski, J.; Marciak, L. C., Wentz, D. & King, C. R. (1995), Salinity mapping for resource management within the County of Wheatland, Alberta, Conservation and Development Branch, Alberta Agriculture, Food and Rural Development, Edmonton, pp. (22).
- [6] Nema, A., & Agrawal, L. (2003). WASTEWATER MANAGEMENT IN NAJAFGARH DRAINAGE BASIN–KEY TO WATER QUALITY IMPROVEMENT IN RIVER YAMUNA. In *Indian Association of Environment Management, Annual Conference* (pp. 1-12). New Delhi: Foundation for Greentech Environmental Systems.
- [7] Story of Najafgarh: How a River Was Murdered After Flood of Flying Fishes By: <u>Angana Chakrabarti</u>, <u>Aniruddha Ghosal</u> & <u>Rounak Kumar</u>; March 2020

